
In 1951, Paul S. Dwyer published Linear
Computations, perhaps the first book de-
voted entirely to numerical linear algebra.1

Digital computing was in its infancy, and
Dwyer focused on computation with mechani-
cal calculators. Nonetheless, the book was state
of the art. Figure 1 reproduces a page of the
book dealing with Gaussian elimination. In
1954, Alston S. Householder published Princi-
ples of Numerical Analysis,2 one of the first mod-
ern treatments of high-speed digital computa-
tion. Figure 2 reproduces a page from this book,
also dealing with Gaussian elimination.

The contrast between these two pages is strik-
ing. The most obvious difference is that Dwyer

used scalar equations whereas Householder used
partitioned matrices. But a deeper difference is
that while Dwyer started from a system of equa-
tions, Householder worked with a (block) LU
decomposition—the factorization of a matrix
into the product of lower and upper triangular
matrices.

Generally speaking, a decomposition is a fac-
torization of a matrix into simpler factors. The
underlying principle of the decompositional ap-
proach to matrix computation is that it is not the
business of the matrix algorithmists to solve par-
ticular problems but to construct computational
platforms from which a variety of problems can
be solved. This approach, which was in full
swing by the mid-1960s, has revolutionized ma-
trix computation.

To illustrate the nature of the decompositional
approach and its consequences, I begin with a
discussion of the Cholesky decomposition and
the solution of linear systems—essentially the
decomposition that Gauss computed in his elim-
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ination algorithm. This article also provides a
tour of the five other major matrix decomposi-
tions, including the pivoted LU decomposition,
the QR decomposition, the spectral decompo-
sition, the Schur decomposition, and the singu-
lar value decomposition.

A disclaimer is in order. This article deals pri-
marily with dense matrix computations. Al-
though the decompositional approach has greatly
influenced iterative and direct methods for sparse
matrices, the ways in which it has affected them
are different from what I describe here.

The Cholesky decomposition and
linear systems

We can use the decompositional approach to
solve the system

Ax = b (1)

where A is positive definite. It is well known that

A can be factored in the form

A = RTR (2)

where R is an upper triangular matrix. The fac-
torization is called the Cholesky decomposition of
A.

The factorization in Equation 2 can be used
to solve linear systems as follows. If we write the
system in the form RTRx = b and set y = R−Tb,
then x is the solution of the triangular system 
Rx = y. However, by definition y is the solution of
the system RTy = b. Consequently, we have re-
duced the problem to the solution of two trian-
gular systems, as illustrated in the following al-
gorithm:

1. Solve the system RTy = b.
2. Solve the system Rx = y. (3)

Because triangular systems are easy to solve, the
introduction of the Cholesky decomposition has

Figure 1. This page from Linear Computations
shows that Paul Dwyer’s approach begins with a
system of scalar equations. Courtesy of John Wiley
& Sons.

Figure 2. On this page from Principles of Numerical
Analysis, Alston Householder uses partitioned 
matrices and LU decomposition. Courtesy of Mc-
Graw-Hill.
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transformed our problem into one for which the
solution can be readily computed.

We can use such decompositions to solve
more than one problem. For example, the fol-
lowing algorithm solves the system ATx = b:

1. Solve the system Ry = b.
2. Solve the system RTx = y. (4)

Again, in many statistical applications we want
to compute the quantity ρ = xTA−1x. Because

xTA−1x = xT(RTR)−1x = (R−Tx)T(R−Tx) (5)

we can compute ρ as follows:

1. Solve the system RTy = x.
2. ρ = yTy. (6)

The decompositional approach can also save
computation. For example, the Cholesky de-
composition requires O(n3) operations to com-
pute, whereas the solution of triangular systems
requires only O(n2) operations. Thus, if you rec-
ognize that a Cholesky decomposition is being

used to solve a system at one point in a compu-
tation, you can reuse the decomposition to do
the same thing later without having to recom-
pute it. Historically, Gaussian elimination and
its variants (including Cholesky’s algorithm) have
solved the system in Equation 1 by reducing it
to an equivalent triangular system. This mixes
the computation of the decomposition with the
solution of the first triangular system in Equa-
tion 3, and it is not obvious how to reuse the
elimination when a new right-hand side presents
itself. A naive programmer is in danger of per-
forming the reduction from the beginning, thus
repeating the lion’s share of the work. On the
other hand, a program that knows a decomposi-
tion is in the background can reuse it as needed.

(By the way, the problem of recomputing de-
compositions has not gone away. Some matrix
packages hide the fact that they repeatedly com-
pute a decomposition by providing drivers to
solve linear systems with a call to a single rou-
tine. If the program calls the routine again with
the same matrix, it recomputes the decomposi-
tion—unnecessarily. Interpretive matrix systems
such as Matlab and Mathematica have the same
problem they hide decompositions behind op-
erators and function calls. Such are the conse-
quences of not stressing the decompositional ap-
proach to the consumers of matrix algorithms.)

Another advantage of working with decompo-
sitions is unity. There are different ways of or-
ganizing the operations involved in solving lin-
ear systems by Gaussian elimination in general
and Cholesky’s algorithm in particular. Figure 3
illustrates some of these arrangements: a white
area contains elements from the original matrix,
a dark area contains the factors, a light gray
area contains partially processed elements, and
the boundary strips contain elements about to
be processed. Most of these variants were origi-
nally presented in scalar form as new algorithms.
Once you recognize that a decomposition is in-
volved, it is easy to see the essential unity of the
various algorithms.

All the variants in Figure 3 are numerically
equivalent. This means that one rounding-error
analysis serves all. For example, the Cholesky al-
gorithm, in whatever guise, is backward stable:
the computed factor R satisfies

(A + E) = RTR (7)

where E is of the size of the rounding unit rela-
tive to A. Establishing this backward is usually
the most difficult part of an analysis of the use

Figure 3. These varieties of Gaussian elimination are all numerically
equivalent. 
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of a decomposition to solve a problem. For ex-
ample, once Equation 7 has been established, the
rounding errors involved in the solutions of the
triangular systems in Equation 3 can be incor-
porated in E with relative ease. Thus, another
advantage of the decompositional approach is
that it concentrates the most difficult aspects of
rounding-error analysis in one place.

In general, if you change the elements of a
positive definite matrix, you must recompute its
Cholesky decomposition from scratch. However,
if the change is structured, it may be possible to
compute the new decomposition directly from
the old—a process known as updating. For ex-
ample, you can compute the Cholesky decom-
position of A + xxT from that of A in O(n2) op-
erations, an enormous savings over the ab initio
computation of the decomposition.

Finally, the decompositional approach has
greatly affected the development of software for
matrix computation. Instead of wasting energy
developing code for a variety of specific applica-
tions, the producers of a matrix package can con-
centrate on the decompositions themselves, per-
haps with a few auxiliary routines to handle the
most important applications. This approach has
informed the major public-domain packages: the
Handbook series,3 Eispack,4 Linpack,5 and La-
pack.6 A consequence of this emphasis on de-
compositions is that software developers have
found that most algorithms have broad compu-
tational features in common—features than can
be relegated to basic linear-algebra subprograms
(such as Blas), which can then be optimized for
specific machines.7−9

For easy reference, the sidebar “Benefits of the
decompositional approach” summarizes the ad-
vantages of decomposition.

History

All the widely used decompositions had made
their appearance by 1909, when Schur intro-
duced the decomposition that now bears his
name. However, with the exception of the Schur
decomposition, they were not cast in the lan-
guage of matrices (in spite of the fact that matri-
ces had been introduced in 185810). I provide
some historical background for the individual
decompositions later, but it is instructive here to
consider how the originators proceeded in the
absence of matrices.

Gauss, who worked with positive definite sys-
tems defined by the normal equations for least
squares, described his elimination procedure as

the reduction of a quadratic form ϕ(x) = xTAx
(I am simplifying a little here). In terms of the
Cholesky factorization A = RTR, Gauss wrote
ϕ(x) in the form

(8)

where is the ith row of R. Thus Gauss re-
duced ϕ(x) to a sum of squares of linear functions
ρi. Because R is upper triangular, the function
ρi(x) depends only on the components xi,…xn
of x. Since the coefficients in the linear forms 
ρi are the elements of R, Gauss, by showing how
to compute the ρi, effectively computed the
Cholesky decomposition of A.

Other decompositions were introduced in
other ways. For example, Jacobi introduced the
LU decomposition as a decomposition of a bi-
linear form into a sum of products of linear func-
tions having an appropriate triangularity with
respect to the variables. The singular value de-
composition made its appearance as an orthogo-
nal change of variables that diagonalized a bilin-
ear form. Eventually, all these decompositions
found expressions as factorizations of matrices.11

The process by which decomposition became
so important to matrix computations was slow
and incremental. Gauss certainly had the spirit.
He used his decomposition to perform many
tasks, such as computing variances, and even
used it to update least-squares solutions. But
Gauss never regarded his decomposition as a
matrix factorization, and it would be anachro-
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Benefits of the decompositional
approach 

• A matrix decomposition solves not one but many problems.
• A matrix decomposition, which is generally expensive to

compute, can be reused to solve new problems involving the
original matrix.

• The decompositional approach often shows that apparently
different algorithms are actually computing the same object.

• The decompositional approach facilitates rounding-error
analysis.

• Many matrix decompositions can be updated, sometimes
with great savings in computation.

• By focusing on a few decompositions instead of a host of
specific problems, software developers have been able to
produce highly effective matrix packages.
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nistic to consider him the father of the decom-
positional approach.

In the 1940s, awareness grew that the usual al-
gorithms for solving linear systems involved ma-
trix factorization.12,13 John Von Neumann and
H.H. Goldstine, in their ground-breaking error
analysis of the solution of linear systems, pointed
out the division of labor between computing a
factorization and solving the system:14

We may therefore interpret the elimination
method as one which bases the inverting of an
arbitrary matrix A on the combination of two
tricks: First it decomposes A into the product of
two semi-diagonal matrices C, B′ …, and conse-
quently the inverse of A obtains immediately
from those of C and B′. Second it forms their in-
verses by a simple, explicit, inductive process.

In the 1950s and early 1960s, Householder
systematically explored the relation between var-
ious algorithms in matrix terms. His book The
Theory of Matrices in Numerical Analysis is the
mathematical epitome of the decompositional
approach.15

In 1954, Givens showed how to reduce a sym-
metric matrix A to tridiagonal form by orthogo-
nal transformation.16 The reduction was merely
a way station to the computation of the eigen-
values of A, and at the time no one thought of it
as a decomposition. However, it and other in-
termediate forms have proven useful in their
own right and have become a staple of the de-
compositional approach.

In 1961, James Wilkinson gave the first back-
ward rounding-error analysis of the solutions of
linear systems.17 Here, the division of labor is
complete. He gives one analysis of the compu-
tation of the LU decomposition and another of
the solution of triangular systems and then com-
bines the two. Wilkinson continued analyzing
various algorithms for computing decomposi-
tions, introducing uniform techniques for deal-
ing with the transformations used in the com-
putations. By the time his book Algebraic
Eigenvalue Problem18 appeared in 1965, the de-
compositional approach was firmly established.

The big six

There are many matrix decompositions, old
and new, and the list of the latter seems to grow
daily. Nonetheless, six decompositions hold the
center. The reason is that they are useful and sta-
ble—they have important applications and the

algorithms that compute them have a satisfac-
tory backward rounding-error analysis (see
Equation 7). In this brief tour, I provide refer-
ences only for details that cannot be found in the
many excellent texts and monographs on nu-
merical linear algebra,18−26 the Handbook se-
ries,3 or the LINPACK Users’ Guide.5

The Cholesky decomposition
Description. Given a positive definite matrix

A, there is a unique upper triangular matrix R
with positive diagonal elements such that

A = RTR.

In this form, the decomposition is known as the
Cholesky decomposition. It is often written in
the form

A = LDLT

where D is diagonal and L is unit lower triangu-
lar (that is, L is lower triangular with ones on the
diagonal).

Applications. The Cholesky decomposition is
used primarily to solve positive definite linear
systems, as in Equations 3 and 6. It can also be
employed to compute quantities useful in statis-
tics, as in Equation 4.

Algorithms. A Cholesky decomposition can
be computed using any of the variants of Gauss-
ian elimination (see Figure 3) modified, of
course, to take advantage of symmetry. All these
algorithms take approximately n3/6 floating-
point additions and multiplications. The algo-
rithm Cholesky proposed corresponds to the di-
agram in the lower right of Figure 3.

Updating. Given a Cholesky decomposition
A = RTR, you can calculate the Cholesky de-
composition of A + xxT from R and x in O(n2)
floating-point additions and multiplications. The
Cholesky decomposition of A − xxT can be cal-
culated with the same number of operations.
The latter process, which is called downdating, is
numerically less stable than updating.

The pivoted Cholesky decomposition. If P
is a permutation matrix and A is positive defi-
nite, then PTAP is said to be a diagonal permu-
tation of A (among other things, it permutes the
diagonals of A). Any diagonal permutation of A
is positive definite and has a Cholesky factor.
Such a factorization is called a pivoted Cholesky
factorization. There are many ways to pivot a
Cholesky decomposition, but the most common
one produces a factor satisfying
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(9)

In particular, if A is positive semidefinite, this
strategy will assure that R has the form

where R11 is nonsingular and has the same order
as the rank of A. Hence, the pivoted Cholesky
decomposition is widely used for rank determi-
nation.

History. The Cholesky decomposition (more
precisely, an LDLT decomposition) was the de-
composition of Gauss’s elimination algorithm,
which he sketched in 180927 and presented in
full in 1810.28 Benoît published Cholesky’s vari-
ant posthumously in 1924.29

The pivoted LU decomposition
Description. Given a matrix A of order n,

there are permutations P and Q such that

PTAQ = LU

where L is unit lower triangular and U is upper
triangular. The matrices P and Q are not unique,
and the process of selecting them is known as
pivoting.

Applications. Like the Cholesky decomposi-
tion, the LU decomposition is used primarily for
solving linear systems. However, since A is a
general matrix, this application covers a wide
range. For example, the LU decomposition is
used to compute the steady-state vector of Markov
chains and, with the inverse power method, to
compute eigenvectors.

Algorithms. The basic algorithm for com-
puting LU decompositions is a generalization of
Gaussian elimination to nonsymmetric matrices.
When and how this generalization arose is ob-
scure (see Dwyer1 for comments and references).
Except for special matrices (such as positive def-
inite and diagonally dominant matrices), the
method requires some form of pivoting for sta-
bility. The most common form is partial pivot-
ing, in which pivot elements are chosen from the
column to be eliminated. This algorithm re-
quires about n3/3 additions and multiplications.

Certain contrived examples show that Gauss-
ian elimination with partial pivoting can be un-
stable. Nonetheless, it works well for the over-
whelming majority of real-life problems.30,31

Why is an open question.

History. In establishing the existence of the
LU decomposition, Jacobi showed32 that under
certain conditions a bilinear form ϕ(x, y) can be
written in the form

ϕ(x, y) = ρ1(x)σ1(y) + ρ2(x)σ2(y) + … + ρn(x)σn(y)

where ρi and σi are linear functions that depend
only on the last (n – i + 1) components of their
arguments. The coefficients of the functions are
the elements of L and U.

The QR decomposition
Description. Let A be an m × n matrix with

m ≥ n. There is an orthogonal matrix Q such that

where R is upper triangular with nonnegative di-
agonal elements (or positive diagonal elements
if A is of rank n).

If we partition Q in the form

Q = (QA Q⊥ )

where QA has n columns, then we can write

A = QAR. (10)

This is sometimes called the QR factorization of
A.

Applications. When A is of rank n, the
columns of QA form an orthonormal basis for
the column space R(A) of A, and the columns of
Q⊥ form an orthonormal basis of the orthogo-
nal complement of R(A). In particular, is
the orthogonal projection onto R(A). For this
reason, the QR decomposition is widely used in
applications with a geometric flavor, especially
least squares.

Algorithms. There are two distinct classes of
algorithms for computing the QR decomposi-
tion: Gram–Schmidt algorithms and orthogonal
triangularization.

Gram–Schmidt algorithms proceed stepwise
by orthogonalizing the kth columns of A against
the first (k − 1) columns of Q to get the kth 
column of Q. There are two forms of the
Gram–Schmidt algorithm, the classical and the
modified, and they both compute only the 
factorization in Equation 10. The classical
Gram–Schmidt is unstable. The modified form
can produce a matrix QA whose columns deviate
from orthogonality. But the deviation is
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bounded, and the computed factorization can be
used in certain applications—notably comput-
ing least-squares solutions. If the orthogonaliza-
tion step is repeated at each stage—a process
known as reorthogonalization—both algorithms
will produce a fully orthogonal factorization.
When n » m, the algorithms without reorthogo-
nalization require about mn2 additions and mul-
tiplications.

The method of orthogonal triangularization
proceeds by premultiplying A by certain simple
orthogonal matrices until the elements below
the diagonal are zero. The product of the or-
thogonal matrices is Q, and R is the upper trian-
gular part of the reduced A. Again, there are two
versions. The first reduces the matrix by House-
holder transformations. The method has the ad-
vantage that it represents the entire matrix Q in
the same amount of memory that is required to
hold A, a great savings when n » p. The second
method reduces A by plane rotations. It is less
efficient than the first method, but is better
suited for matrices with structured patterns of
nonzero elements.

Relation to the Cholesky decomposition.
From Equation 10, it follows that

ATA = RTR. (11)

In other words, the triangular factor of the QR
decomposition of A is the triangular factor of the
Cholesky decomposition of the cross-product
matrix ATA. Consequently, many problems—
particularly least-squares problems—can be
solved using either a QR decomposition from a
least-squares matrix or the Cholesky decompo-
sition from the normal equation. The QR de-
composition usually gives more accurate results,
whereas the Cholesky decomposition is often
faster.

Updating. Given a QR factorization of A,
there are stable, efficient algorithms for recom-
puting the QR factorization after rows and
columns have been added to or removed from
A. In addition, the QR decomposition of the
rank-one modification A + xyT can be stably 
updated.

The pivoted QR decomposition. If P is a
permutation matrix, then AP is a permutation of
the columns of A, and (AP)T(AP) is a diagonal
permutation of ATA. In view of the relation of
the QR and the Cholesky decompositions, it is
not surprising that there is a pivoted QR factor-
ization whose triangular factor R satisfies Equa-
tion 9. In particular, if A has rank k, then its piv-

oted QR factorization has the form

.

It follows that either Q1 or the first k columns of
AP form a basis for the column space of A.
Thus, the pivoted QR decomposition can be
used to extract a set of linearly independent
columns from A.

History. The QR factorization first appeared
in a work by Erhard Schmidt on integral equa-
tions.33 Specifically, Schmidt showed how to or-
thogonalize a sequence of functions by what is
now known as the Gram–Schmidt algorithm.
(Curiously, Laplace produced the basic formu-
las34 but had no notion of orthogonality.) The
name QR comes from the QR algorithm, named
by Francis (see the history notes for the Schur
algorithm, discussed later). Householder intro-
duced Householder transformations to matrix
computations and showed how they could be
used to triangularize a general matrix.35 Plane
rotations were introduced by Givens,16 who used
them to reduce a symmetric matrix to tridiago-
nal form. Bogert and Burris appear to be the first
to use them in orthogonal triangularization.36

The first updating algorithm (adding a row) is
due to Golub,37 who also introduced the idea of
pivoting.

The spectral decomposition
Description. Let A be a symmetric matrix of

order n. There is an orthogonal matrix V such
that

A = V Λ VT,      Λ = diag(λ1, …,λn). (12)

If vi denotes the ith column of V, then Avi = λivi.
Thus (λi, vi) is an eigenpair of A, and the spectral
decomposition shown in Equation 12 exhibits the
eigenvalues of A along with complete orthonor-
mal system of eigenvectors.

Applications. The spectral decomposition
finds applications wherever the eigensystem of
a symmetric matrix is needed, which is to say in
virtually all technical disciplines.

Algorithms. There are three classes of algo-
rithms to compute the spectral decomposition:
the QR algorithm, the divide-and-conquer al-
gorithm, and Jacobi’s algorithm. The first two
require a preliminary reduction to tridiagonal
form by orthogonal similarities. I discuss the QR
algorithm in the next section on the Schur de-
composition. The divide-and-conquer algo-
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rithm38,39 is comparatively recent and is usually
faster than the QR algorithm when both eigen-
values and eigenvectors are desired; however, it
is not suitable for problems in which the eigen-
values vary widely in magnitude. The Jacobi al-
gorithm is much slower than the other two, but
for positive definite matrices it may be more 
accurate.40 All these algorithms require O(n3)
operations.

Updating. The spectral decomposition can be
updated. Unlike the Cholesky and QR decom-
positions, the algorithm does not result in a re-
duction in the order of the work—it still remains
O(n3), although the order constant is lower.

History. The spectral decomposition dates
back to an 1829 paper by Cauchy,41 who intro-
duced the eigenvectors as solutions of equations
of the form Ax = λx and proved the orthogonal-
ity of eigenvectors belonging to distinct eigen-
values. In 1846, Jacobi42 gave his famous algo-
rithm for spectral decomposition, which iter-
atively reduces the matrix in question to diago-
nal form by a special type of plane rotations,
now called Jacobi rotations. The reduction to
tridiagonal form by plane rotations is due to
Givens16 and by Householder transformations
to Householder.43

The Schur decomposition
Description. Let A be a matrix of order n.

There is a unitary matrix U such that

A = UTUH

where T is upper triangular and H means con-
jugate transpose. The diagonal elements of T are
the eigenvalues of A, which, by appropriate
choice of U, can be made to appear in any order.
This decomposition is called a Schur decomposi-
tion of A.

A real matrix can have complex eigenvalues
and hence a complex Schur form. By allowing T
to have real 2 × 2 blocks on its diagonal that con-
tain its complex eigenvalues, the entire decom-
position can be made real. This is sometimes
called a real Schur form.

Applications. An important use of the Schur
form is as an intermediate form from which the
eigenvalues and eigenvectors of a matrix can be
computed. On the other hand, the Schur de-
composition can often be used in place of a com-
plete system of eigenpairs, which, in fact, may not
exist. A good example is the solution of Sylvester’s
equation and its relatives.44,45

Algorithms. After a preliminary reduction to

Hessenberg form, which is usually done with
Householder transformations, the Schur from is
computed using the QR algorithm.46 Elsewhere
in this issue, Beresford Parlett discusses the
modern form of the algorithm. It is one of the
most flexible algorithms in the repertoire, having
variants for the spectral decomposition, the sin-
gular values decomposition, and the generalized
eigenvalue problem.

History. Schur introduced his decomposition
in 1909.47 It was the only one of the big six to
have been derived in terms of matrices. It was
largely ignored until Francis’s QR algorithm
pushed it into the limelight.

The singular value decomposition
Description. Let A be an m × n matrix with 

m ≥ n. There are orthogonal matrices U and V
such that

where

Σ = diag(σ1, …, σn),      σ1 ≥ σ2 ≥ … ≥ σn ≥ 0.

This decomposition is called the singular value
decomposition of A. If UA consists of the first n
columns of U, we can write

A = UA Σ VT  (13)

which is sometimes called the singular value fac-
torization of A.

The diagonal elements of σ are called the singu-
lar values of A. The corresponding columns of U
and V are called left and right singular vectors of A.

Applications. Most of the applications of the
QR decomposition can also be handled by the
singular value decomposition. In addition, the
singular value decomposition gives a basis for the
row space of A and is more reliable in determin-
ing rank. It can also be used to compute optimal
low-rank approximations and to compute angles
between subspaces.

Relation to the spectral decomposition. The
singular value factorization is related to the spec-
tral decomposition in much the same way as the
QR factorization is related to the Cholesky de-
composition. Specifically, from Equation 13 it
follows that

ATA = VΣ2VT.

Thus the eigenvalues of the cross-product ma-

U AVT = 
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trix ATA are the squares of the singular vectors
of A and the eigenvectors of ATA are right sin-
gular vectors of A.

Algorithms. As with the spectral decomposi-
tion, there are three classes of algorithms for
computing the singular value decomposition: the
QR algorithm, a divide-and-conquer algorithm,
and a Jacobi-like algorithm. The first two re-
quire a reduction of A to bidiagonal form. The
divide-and-conquer algorithm49 is often faster
than the QR algorithm, and the Jacobi algorithm
is the slowest.

History. The singular value decomposition was
introduced independently by Beltrami in 187350

and Jordan in 1874.51 The reduction to bidiago-
nal form is due to Golub and Kahan,52 as is the
variant of the QR algorithm. The first Jacobi-like
algorithm for computing the singular value de-
composition was given by Kogbetliantz.53

The big six are not the only decompo-
sitions in use; in fact, there are many
more. As mentioned earlier, certain
intermediate forms—such as tridi-

agonal and Hessenberg forms—have come to be
regarded as decompositions in their own right.
Since the singular value decomposition is ex-
pensive to compute and not readily updated,
rank-revealing alternatives have received con-
siderable attention.54,55 There are also general-
izations of the singular value decomposition and
the Schur decomposition for pairs of matri-
ces.56,57 All crystal balls become cloudy when
they look to the future, but it seems safe to say
that as long as new matrix problems arise, new
decompositions will be devised to solve them. 
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